G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
{ -1 / G* = / T] / c} =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
/ /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
/ , / T + M + P = / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Difusão de Bohm é a difusão de plasma através de um campo magnético com um coeficiente de difusão igual a
- ,
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde B é a intensidade do campo magnético, T é a temperatura, e e é a carga elementar.
Foi primeiramente observada em 1949 por David Bohm, E. H. S. Burhop, e Harrie Massey enquanto estudavam arcos magnéticos para uso em separação de isótopos.[1] Desde então tem sido observado que muitos outros plasmas seguem esta lei. Felizmente há exceções, onde a taxa de difusão é menor, caso contrário, não haveria esperança de alcançar energia de fusão prática.[2]
Geralmente a difusão pode ser modelada como um passeio aleatório de passos de comprimento δ e tempo τ. Se a difusão é colisional, então δ é o percurso livre médio e τ é o inverso da frequência de colisões. O coeficiente de difusão D pode ser expresso de várias formas, como
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde v = δ/τ é a velocidade entre colisões.[3][4]
Em um plasma magnetizado, a frequência de colisões é geralmente pequena em comparação com a girofrequência, sendo que a medida do passo é a precessão de Larmor (também chamado de giroraio) ρ e o tempo do passo é o inverso da frequência de colisões ν, conduzindo a D = ρ²ν. Se a frequência de colisões é maior que a girofrequência, então as partículas podem ser consideradas movendo-se livremente com a velocidade térmica vth entre colisões, e o coeficiente de difusão toma a forma D = vth²/ν. Evidentemente a difusão clássica (colisional) é máxima quando a frequência de colisões é igual à girofrequência, no caso D = ρ²ωc = vth²/ωc. Substituindo ρ = vth/ωc, vth = (kBT/m)1/2, e ωc = eB/m, chega-se a D = kBT/eB, que é a escala de Bohm. Considerando a natureza aproximada desta derivação, os 1/16 perdidos não são motivo de preocupação. Portanto, pelo menos dentro do fator da ordem de unidade, a difusão de Bohm é sempre maior do que a difusão clássica.
A lei de Fick é uma lei quantitativa na forma de equação diferencial que descreve diversos casos de difusão de matéria ou energia em um meio no qual inicialmente não existe equilíbrio químico ou térmico. Recebe seu nome de Adolf Eugen Fick, que as derivou em 1855.
Em situações nas quais existem gradientes de concentração de uma substância, ou de temperatura, se produz um fluxo de partículas ou de calor que tende a homogenizar a dissolução e uniformizar a concentração ou a temperatura. O fluxo homogenizador é uma consequência estatística do movimento aleatório das partículas que dá lugar ao segundo princípio da termodinâmica, conhecido também como movimento térmico casual das partículas. Assim, os processos físicos de difusão podem ser vistos como processos físicos ou termodinâmicos irreversíveis. Vale lembrar que a difusão de partículas, por exemplo, não necessariamente ocorre de um meio mais concentrado para um meio menos concentrado, e sim devido a uma diferença no Potencial químico da solução.
Este fluxo irá no sentido oposto do gradiente e, se este é débil, poderá aproximar-se pelo primeiro termo da série de Taylor, resultando a lei de Fick
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
sendo o coeficiente de difusão da espécie de concentração . No caso particular do calor, a lei de Fick se conhece como lei de Fourier e se escreve como
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
sendo a condutividade térmica.
O Coeficiente de difusão pode ser calculado teoricamente para gases com erros não muito significativos, mas para líquidos e sólidos somente dados experimentais devem ser usados uma vez que a difusão de gases, líquidos e sólidos é extremamente complicada e as teorias não abrangem totalmente os seus mecanismos. O dispositivo utilizado para fazer a medição experimental do coeficiente difusivo mássico de gases é a célula de Arnold.
Combinando a lei de Fick com a lei de conservação para a espécie c
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
resulta a equação de difusão ou segunda lei de Fick:
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
Se existe produção ou destruição da espécie (por uma reação química), a esta equação deve adicionar-se um termo de fonte, descrito pela variável s na formulação abaixo:
[1] / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Quando trabalhamos em regime estacionário a primeira derivada da equação acima é zero pois como estamos em regime estacionário as concentrações não podem variam com o tempo; da mesma forma, em regime estacionário não há acúmulo.
Quando há reação química existem duas possibilidades: reação química homogênea e reação química heterogênea. Na reação química homogênea a reação ocorre ao longo do caminho de difusão, ou seja, ao passo que o componente migra na solução ele vai reagindo e sendo consumido; desta forma, reação química e difusão ocorrem concomitantemente. Quando a reação química é dita heterogênea a reação ocorre somente na fronteira e neste caso a reação e difusão são independentes uma da outra.
A lei de Fick possui duas contribuições, a primeira refere-se à difusão do componente na solução, por exemplo, ao movimento das partículas devido a uma diferença de potencial químico do sistema. A segunda parte da equação à chamada parcela advectiva, ela origina-se do movimento global do fluido.[2]
A segunda parcela da equação (a parcela advectiva) pode muitas vezes ser desprezadas para líquidos e sempre ser desconsiderada para sólidos uma vez que o movimento mascroscópico de sólidos e quase nulo. Quando esta simplificação é feita estamos fazendo uma aproximação de meio estacionário.Para o caso particular da temperatura, se aplica se a energia interna é proporcional à temperatura, o resultado é a equação do calor.
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
com a capacidade calorífica e a massa específica.
A equação de Nernst–Planck é uma equação de conservação de massa usada para descrever o movimento de espécies químicas em um meio fluido. Descreve o fluxo de íons sob a influência conjunta de um gradiente de concentração iônica e de um campo elétrico . Ela estende a lei de Fick da difusão para o caso onde as partículas em difusão são também movidas em relação ao fluido por forças eletrostáticas.[1][2] Se as partículas em difusão são elas mesmas carregadas, influenciam o campo elétrico em movimento.
A equação de Nernst–Planck é dada por:
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
Onde t é tempo, D é a difusividade das espécies químicas, c é a concentração das espécies, e u é a velocidade do fluido, z é a valência das espécies iônicas, e é a carga elementar, é a constante de Boltzmann e T é a temperatura.
A força que em média uma partícula componente i seja submetida, é proporcional ao gradiente do campo elétrico Φ e do potencial químico μi:
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
O fluxo material específico, j do i-ésimo componente é encontrado por:
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
Comentários
Postar um comentário